- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Ruoxin (4)
-
Gu, Wenchao (2)
-
Jiang, Shaoyi (2)
-
Luozhong, Sijin (2)
-
Quon, Gerald (2)
-
Yuan, Zhefan (2)
-
Chen, Yu (1)
-
Choi, Yongin (1)
-
Gao, Wenting (1)
-
Li, Bowen (1)
-
McCurdy, Caleb (1)
-
Sarmiento, Tara (1)
-
Wilkens, Stephan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Neural networks such as variational autoencoders (VAE) perform dimensionality reduction for the visualization and analysis of genomic data, but are limited in their interpretability: it is unknown which data features are represented by each embedding dimension. We present siVAE, a VAE that is interpretable by design, thereby enhancing downstream analysis tasks. Through interpretation, siVAE also identifies gene modules and hubs without explicit gene network inference. We use siVAE to identify gene modules whose connectivity is associated with diverse phenotypes such as iPSC neuronal differentiation efficiency and dementia, showcasing the wide applicability of interpretable generative models for genomic data analysis.more » « less
-
Yuan, Zhefan; Li, Bowen; Gu, Wenchao; Luozhong, Sijin; Li, Ruoxin; Jiang, Shaoyi (, Journal of the American Chemical Society)
-
Luozhong, Sijin; Yuan, Zhefan; Sarmiento, Tara; Chen, Yu; Gu, Wenchao; McCurdy, Caleb; Gao, Wenting; Li, Ruoxin; Wilkens, Stephan; Jiang, Shaoyi (, Nano Letters)
-
Li, Ruoxin; Quon, Gerald (, Genome Biology)
An official website of the United States government
